Enroll No. _____

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous)

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION NOVEMBER – 2016

M.Sc. Mathematics

16PMTCC03 - FUNCTIONS OF SEVERAL VARIABLES

Duration of Exam – 3 hrs	Semester – I	Max. Marks – 70

<u>Part A</u> (5x2=10 marks)

Answer ALL questions

- 1. Define continuously differentiable function and directional derivative of function.
- 2. State Young's and Schwarz theorem.
- 3. Define Euclidean Norm in \mathbb{R}^n and find ||u|| when u = (-2, 3, 4).
- 4. Define Einstein's summation convention and find the value of δ_i^i .
- 5. If a_{ij} are constant and $a_{ij} = a_{ji}$, calculate $\frac{\partial^2}{\partial x_k \partial x_l} (a_{ij} x_i x_j)$.

<u>Part B</u> (5X5 = 25 marks)

Answer ALL questions

6a. If $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and if f(0) = 0 then prove that there exists $g_i: \mathbb{R}^n \to \mathbb{R}$ such that $f(x) = \sum_{i=1}^n x_i g_i(x)$.

OR

6b. Let $A \subset \mathbb{R}^n$ be an open set, let $a \in A$ and let $f : A \to \mathbb{R}$. If f has maximum value at point a and if $Df_i(a)$ exists then prove that $D_i f(a) = 0$.

7a. If $P: R^2 \to R$ is defined by $P(x, y) = x \bullet y$, then DP(a,b)(x, y) = bx + ay also P'(a,b) = (b,a). Then prove that P is differentiable.

OR

7b. Define Euclidean inner product. Let $x, y \in \mathbb{R}^n$, then show that $|||x|| - ||y||| \le ||x - y||$.

8a. If $f: \mathbb{R}^n \to \mathbb{R}$ is a constant function then prove that Df(a) = 0.

OR

8b. Prove that Every Closed ball is closed set

⁹a. Define $f: \mathbb{R}^2 \to \mathbb{R}$ as $f(x) = \sin(x_1 x_2)$. Find Df(a).

OR

- 9b. Let $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ then prove that $|\langle x, y \rangle| = ||x|| * ||y||$ if and only if x and y are dependent.
- 10a. A function $f: \mathbb{R}^n \to \mathbb{R}$ is homogeneous of degree *m* if $f(tx) = t^m f(x), x \in \mathbb{R}^n$ then

show that
$$f(x) = \frac{1}{m} \sum_{i=1}^{n} x_i D_i f(x)$$
.

OR

10b. Define covariant and contravariant tensor of rank two. If x^i be the coordinate of a point in n-dimensional space show that dx^i are component of a contravariant vector.

11a. Let
$$f, g: \mathbb{R}^n \to \mathbb{R}$$
 be differentiable at $a \in \mathbb{R}^n$. Then
1) $D(f \pm g)(a) = Df(a) \pm Dg(a)$
2) $D(f.g)(a) = g(a).Df(a) + f(a)Dg(a)$
3) If $g(a) \neq 0$, then $D\left(\frac{f}{g}\right)(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{[g(a)]^2}$

OR

- 11b. Prove by an example the fact $T: \mathbb{R}^n \to \mathbb{R}^m$ and e_1, e_2, \dots, e_n are standard basis in \mathbb{R}^n then $T((x_1, x_2, \dots, x_n)) = T(e_1)x_1 + T(e_2)x_2 + \dots + T(e_n)x_n$.
- 12a. State and prove chain rule.

OR

12b. Let $x, y \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. Then prove that

- i) $||\mathbf{x}|| \ge 0$ and $||\mathbf{x}|| = 0$ if and only if $\mathbf{x} = 0$.
- ii) $|\langle x, y \rangle| \le ||x|| ||y||$
- iii) $||x + y|| \le ||x|| + ||y||$
- iv) $||\alpha x|| = \alpha ||x||.$

13a. Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $a, x, y, e_i \in \mathbb{R}^n$. Then

- 1) $De_i f(a) = D_i f(a)$
- 2) $Dsxf(a) = sD_x f(a)$
- 3) If f is differentiable at a, then $D_x f(a) = Df(a)(x)$

OR

13b. If $a_{ij}x^ix^j = 0$ where a_{ij} are constant then show that $a_{ij} + a_{ji} = 0$.

14a. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in \mathbb{R}^n$. Let $1 \le i \le n$ and let $1 \le j \le m$. Then the $(i, j)^{th}$ entry of the Jacobian matrix f'(a) is exactly the i^{th} entry of the Jacobian matrix $f^{j'}(a)$.

OR

- 14b. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the transformation that sends each point to its orthogonal projection on XZ plane. Show that T is linear transformation.
- 15a. If a function $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable at $a \in \mathbb{R}^n$ then show that Df(a) exists.

OR

15b. Define Kronecker delta. Show that $\frac{\partial \phi}{\partial x^i}$ is a covariant vectors of rank one where ϕ is a scalar function.